Fluorination of phosphorus(+3) derivatives by xenon diffuoride

S.A. Lermontov*, A.V. Popov, S.I. Zavorin, I.I. Sukhojenko, N.V. Kuryleva, I.V. Martynov, N.S. Zefirov*

Institute of Physiologically Active Compounds, Chernogolovka, Moscow Region 142432 (Russian Federation)

P. Stang^{*}

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (USA)

(Received October 14, 1992; accepted April 8, 1993)

Abstract

Xenon difluoride, XeF_2 , effectively fluorinates various phosphorous acid derivatives as well as hydrophosphoryl compounds. Arbuzov rearrangement is followed by i-Bu \rightarrow t-Bu isomerization in the case of i-Bu OPF₂.

Introduction

Xenon difluoride (1) is a powerful and versatile reagent for the oxidative fluorination of organic and elementorganic compounds [1]. In particular, it has been shown to be an effective reagent for the fluorination of phosphines and halogenophosphines [2]. However, the reaction of 1 with phosphites and hydrophosphoryl compounds has not been described in the literature and the goal of this paper is to fill that gap.

Results and discussion

A. Reaction with phosphites

We have found that reagent 1 reacts readily with derivatives of phosphorous acid such as the silyl esters 2 and amides 3, with formation of corresponding dialkylfluorophosphates 4 or dialkylfluorophosphazenes 5.

$$(MeO)_{2}POSiMe_{3} \xrightarrow{1, CH_{3}CN, -Xe}_{10-15 \circ C} (MeO)_{2}P$$
(2)
$$(A) F$$

$$(RO)_{2}P-N(SiMe_{3})_{2} \xrightarrow{1, CH_{3}CN, -Xe}_{10-15 \circ C} (RO)_{2}P$$
(3a-c)
$$(RO)_{2}P-N(SiMe_{3})_{2} \xrightarrow{1, CH_{3}CN, -Xe}_{10-15 \circ C} (RO)_{2}P$$
(5a-c)
$$(RO)_{2}P-N(SiMe_{3})_{2} \xrightarrow{1, CH_{3}CN, -Xe}_{10-15 \circ C} (RO)_{2}P$$

(a) R = Et; (b) R = iPr; (c) $R = -CH_2CH_2-$

Both reactions are easily monitored by the amount of evolved xenon; the products (with the exception of 5c) were isolated by distillation. Compound 5c appeared to be unstable and was identified only by ³¹P NMR spectroscopy { $\delta P = +2$ ppm [d, J(P-F) = 1004 Hz]}.

Tris(trifluoroethyl)phosphite (6) reacts with reagent 1 in an unexpected manner to give two products in the ratio 4.6:1 (determined by ³¹P NMR spectroscopy). The major product is the corresponding difluorophosphorane 7 and the minor product is the phosphonium salt **8a**.

$$(CF_{3}CH_{2}O)_{3}P + XeF_{2} \longrightarrow$$

$$(6) \qquad (1)$$

$$(CF_{3}CH_{2}O)_{3}PF_{2} + (CF_{3}CH_{2}O)_{4}P^{+}PF_{6}^{-}$$

$$(7) \qquad (8a)$$

We explain the formation of the unexpected salt 8a by fluorine exchange between 7 and XeF₂, followed by disproportionation of the transient trifluorophosphorane 9.

$$(RO)_{3}PF_{2} + XeF_{2} \longrightarrow [(RO)_{2}PF_{3}] + [FXeOR]$$

$$(9)$$

$$2[(RO)_{2}PF_{3}] \longrightarrow (RO)_{4}P^{+}PF_{6}^{-}$$

$$(9)$$

$$(8)$$

The instability of dialkoxytrifluorophosphoranes of type 9 and their rapid isomerization into salts of type 8 has been described in the literature [3]. In order to confirm this mechanistic scheme, we performed the reaction of XeF_2 with the specially prepared phosphorane 7 and obtained salt 8a.

^{*}Author to whom correspondence should be addressed.

B. Reaction with fluorophosphites

Diethylfluorophosphite (10) reacts readily with XeF_2 giving the phosphonium salt **8b**.

$$(EtO)_2 PF + XeF_2 \xrightarrow{-Xe} [(EtO)_2 PF_3] \longrightarrow$$
(10)
$$(EtO)_4 P^+ PF_6^-$$
(8b)

An unusual reaction was observed when isobutyldifluorophosphite (11) was allowed to react with catalytic amount of XeF₂ (10 mol%). Surprisingly, the major product of this reaction appeared to be t-butyldifluorophosphonate (12) (more than 85%, according to ³¹P NMR spectroscopy)

i-BuOPF₂+XeF₂
$$\longrightarrow$$
 t-BuP(O)F₂
(11) (12)

The isolated yield of **12** exceeded 50%. Traces of isobutyldifluorophosphate, i-BuOP(O)F₂, were also found in the reaction mixture (³¹P NMR). In summary, this process may be classified as an Arbuzov rearrangement accompanied by isomerization of the primary alkyl radical into a tertiary one.

To rationalize this transformation, one should keep in mind that the disproportionation of ROPF_4 into a mixture of $\text{ROP}(\text{O})\text{F}_2$ and $\text{R}^+ \text{PF}_6^-$ is documented in the literature [4]. Thus, we believe that the initiation step is the formation of the salt 13, which is the real catalyst of the isomerization and is regenerated in accordance with the general scheme of an Arbuzov rearrangement.

We believe that such reactions may give easy access to tertiary phosphonates of type **12** and their derivatives.

C. Reaction with hydrophosphoryl compounds

It is known that alkyl- and dialkyl(aryl)-phosphines are fluorinated by XeF_2 with conservation of the P-H bond [2]. We have found that diphenylphosphinic acid (14) readily reacts with XeF_2 giving the corresponding fluoroanhydride 15.

$$\frac{Ph_2P(O)H + XeF_2 \longrightarrow Ph_2P(O)F}{(14)}$$
(15)

Dialkylphosphites 16 react with XeF_2 very slowly in the absence of catalyst but much more rapidly in the presence of pyridine or $BF_3 \cdot Et_2O$. However, these reactions are non-selective and cannot be used for the synthesis of dialkylfluorophosphates.

$$(RO)_{2}P(O)H \xrightarrow{1}$$
(16)
$$(RO)_{2}P(O)F + 5-7 \text{ unidentified products}$$

$$(5\%-10\%)$$

R = Me, Et, Pr

Experimental

¹H and ³¹P spectra were recorded on a Brucker CXP-200 instrument (200 and 81 MHz, respectively) with TMS and 85% H₃PO₄ as external standards. Chemical shifts are reported in δ units (ppm) downfield from the reference.

A general procedure for the fluorination of $(MeO)_2POSiMe_3$ (2), $(RO)_2PN(SiMe_3)_2$ (3a-c) and $(EtO)_2PF$ (10)

Phosphorus compound (2–3 mmol) was added dropwise to a cooled (0–5 °C), stirred solution of an equivalent amount of XeF₂ in 3–5 ml of dried CH₃CN. After completion of gas evolution, the reaction mixture was stirred at room temperature for 30–40 min, analyzed by ³¹P NMR spectroscopy with a product being capable of isolation by distillation (except **5c** and **8b**). The following compounds were obtained:

Compound (4): B.p. 63–65 °C/15 mmHg (55%). ³¹P NMR δ : -5.5 [d, J(P-F)=972 Hz] ppm. Lit. value [5]: b.p. 149 °C/760 mmHg.

Compound (5a): B.p. 60–62 °C/18 mmHg (50%). ³¹P NMR δ : -12 [d, J(P-F)=960 Hz] ppm. Lit. value [6]: b.p. 63–65 °C/20 mmHg. ³¹P NMR δ : -15.5 [J(P-F)=962 Hz] ppm.

Compound (5b): B.p. 77 °C/20 mmHg (45%). ³¹P NMR δ : -14 [d, J(P-F)=959 Hz] ppm.

Compound (8b) (R = Et): ³¹P NMR δ : -0.6 (s); -143 [septet, J(P-F) = 710 Hz] ppm. Lit. value [3]: ³¹P NMR δ : -5 (s); -147 [septet, J(P-F) = 700 Hz] ppm.

Fluorination of tris(trifluoroethyl)phosphite (6)

A solution of XeF₂ (170 mg, 1 mmol) in CH₃CN was added to a cooled solution of **6** (0.33 g, 1 mmol). The reaction mixture (monitored by ³¹P NMR) contained two substances, i.e. difluorophosphorane **7** {-77.16 [t, J(P-F)=750 Hz] ppm} and **8a** {-2.7 (s); -143 [septet, J(P-F)=710 Hz] ppm} in a 4.6:1 ratio. Phosphorane **7** was isolated by distillation, b.p. 59–61 °C/10 mmHg (58% yield). Lit. value [7]: ³¹P NMR δ : -77.3 [J(P-F)=747 Hz] ppm.

Reaction of XeF_2 with isobutyl diffuor ophosphite (11)

XeF₂ (0.24 g, 1.4 mmol) was added to 2 g (14 mmol) of **11** at -30 °C (no reaction occurred at this temperature) and the cooling bath was slowly heated. When the bath temperature reached -10 to -12 °C, a vigorous reaction occurred accompanied by gas evolution. After completion of the reaction, the mixture consisted (according to ³¹P NMR) of 85%–90% of phosphonate **12**, 10% of PF₆⁻ anion and traces of i-BuOP(O)F₂ {³¹P NMR δ : -19 [t, J(P-F) = 1010 Hz] ppm}. Phosphonate **12** was purified by distillation, b.p. 120 °C (1.05 g, 52.5%). ³¹P NMR δ : 31.95 [triplet of decets, J(P-F) = 1172 Hz, J(P-H) = 19 Hz] ppm. ¹H NMR δ : 1.3 [dt, J(H-P) = 19 Hz, J(H-F) = 1 Hz] ppm. Lit. value [8]: b.p. 63 °C/85 mmHg.

Fluorination of $Ph_2P(O)H$ (14)

A solution consisting of 220 mg (1.3 mmol) of XeF_2 in 1.5 ml CH₃CN was added dropwise to a mixture of 263 mg (1.3 mmol) of 14, 100 μ l of pyridine and 1 ml of CH₃CN. The exothermic reaction was completed within 5–10 min. The mixture was stirred for 1–1.5 h and evaporated. The residue obtained was practically pure 15. ³¹P NMR δ : 41 [d, J(P-F) = 1013 Hz] ppm. Lit. value [9]: ³¹P NMR δ : 40 (d, J = 1020 Hz) ppm.

References

- 1 V.V. Bardin and Yu. L. Yagupolsky, in L.S. German and S.V. Zemskov (eds.), Novye ftoriruyuschie reagenty v organicheskom sinteze [Novel Fluorinating Reagents in Organic Synthesis (Russ.)], Nauka, Novosibirsk, 1987, p. 63.
- 2 J.A. Gibson, R.K. Marat and A.F. Janzen, Can. J. Chem., 53 (1975) 3044.
- 3 L. Kolditz, K. Lehmann, W. Wiekler and A.R. Grimmer, Z. Anorg. Allg. Chem., 360 (1968) 259.
- 4 D.H. Brown, K.D. Crosbie, G.W. Fraser and D.W. Sharp, J. Chem. Soc. A, (1969) 872.
- 5 R.S. Edmundson (ed.), Dictionary of Organophosphorus Compounds, Chapman and Hall, London, New York, 1988.
- 6 L.P. Philonenko, A.A. Kudrjavzev and A.M. Pintchuk, Zh. Obshch. Khim., 51 (1981) 1971.
- 7 S.A. Lermontov, A.V. Popov, I.I. Sukhojenko, V.O. Zavelsky and I.V. Martynov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, (1990) 682.
- 8 G. Schrader, Ger. Pat. 1 146 882 (1963); [Chem. Abs., 59 (1963) 10 121g].
- 9 R. Schmutzler, J. Chem. Soc., (1964) 4551.